જો ઉપવલયને વર્તૂળ ${\left( {x - 1} \right)^2} + {y^2} = 1$ ના વ્યાસને અર્ધ-ગૌણ અક્ષ તરીકે લેવામાં આવે છે અને વર્તૂળ ${x^2} + {\left( {y - 2} \right)^2} = 4$ ના વ્યાસને અર્ધ-પ્રધાન અક્ષ તરીકે લેવામાં આવે છે.જો ઉપવલયનું કેન્દ્ર ઊગમબિંદુ હોય અને અક્ષો યામાક્ષો હોય,તો ઉપવલયનું સમીકરણ મેળવો.
$4{x^2} + {y^2} = 4$
$\;{x^2} + 4{y^2} = 8$
$\;4{x^2} + {y^2} = 8$
$\;{x^2} + 4{y^2} = 16$
જે ઉપવલયની નાભિઓ $(-1, 0)$ અને $(7, 0)$ અને ઉત્કેન્દ્રતા $1/2$ હોય, તે ઉપવલય પરના બિંદુનું પ્રચલ સ્વરૂપ :
જો $L$ એ પરવલય $y^{2}=4 x-20$ નો બિંદુ $(6,2)$ આગળનો સ્પર્શક છે. જો $L$ એ ઉપવલય $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1$ નો પણ સ્પર્શક હોય તો $b$ ની કિમંત મેળવો.
જો બે બિંદુઓ $(x_1, y_1)$ અને $(x_2y_2)$ માંથી ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પર દોરેલા સ્પરશકોની સ્પર્શ જીવાઓ કાટખૂણે હોય, તો $\frac{{{x_1}{x_2}}}{{{y_1}{y_2}}}\,\, = \,\,..........$
જો અતિવલય એ ઉપવલય $\frac{{{x^2}}}{{25}}\,\, + \;\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$ ના નાભિકેન્દ્રમાંથી પસાર થાય અને તેની મુખ્ય અને અનુબદ્ધ અક્ષોએ ઉપવલયની પ્રધાન અક્ષ અને ગૌણ અક્ષને સમાન હોય, અને ઉત્કેન્દ્રાઓનો ગુણાકાર $1,$ હોય, તો .......
$c$ ની કેટલી કિમંતો માટે રેખા $y = 4x + c$ એ વક્ર $\frac{{{x^2}}}{4} + {y^2} = 1$ ને સ્પર્શે છે .