વર્તૂળ $(x - 1)^2 + y^2 = 1$ ના વ્યાસને ગૌણ અક્ષની અર્ધલંબાઈ તરીકે અને વર્તૂળ $x^2 + (y - 2)^2 = 4$ ના વ્યાસને પ્રધાન અક્ષની અર્ધ લંબાઈ તરીકે લઈને એક ઉપવલય દોર્યો. જો ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને તેની અક્ષો યામાક્ષો હોય, તો ઉપવલયનું સમીકરણ મેળવો.
$4x^2 + y^2 = 16$
$4x^2 + y^2 = 4$
$x^2 + 4y^2= 8$
એકપણ નહી.
શાંકવ $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ ને રેખા $x\cos \alpha \,\, + \,y\sin \,\alpha \,\, = \,p\,\,$ ક્યારે સ્પર્શશે?
જો ઉપવલયને વર્તૂળ ${\left( {x - 1} \right)^2} + {y^2} = 1$ ના વ્યાસને અર્ધ-ગૌણ અક્ષ તરીકે લેવામાં આવે છે અને વર્તૂળ ${x^2} + {\left( {y - 2} \right)^2} = 4$ ના વ્યાસને અર્ધ-પ્રધાન અક્ષ તરીકે લેવામાં આવે છે.જો ઉપવલયનું કેન્દ્ર ઊગમબિંદુ હોય અને અક્ષો યામાક્ષો હોય,તો ઉપવલયનું સમીકરણ મેળવો.
ઉપવલય $\frac{{{x^2}}}{4}\,\, + \,\,\frac{{{y^2}}}{{12}}\,\, = \,1$ ના બિંદુ $(1/4, 1/4)$ આગળના સ્પર્શકનું સમીકરણ :
ધારો કે $A(\alpha, 0)$ અને $B(0, \beta)$ એ, રેખા $5 x+7 y=50$ પરના બિંદુઓ છે. ધારો કે બિંદુ $P$, રેખાખંડ $A B$ નું $7: 3$ ગુણોત્તરમાં અંતઃવિભાજન કરે છે. ધારો કે ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની એક નિયામિકા $3 x-25=0$ છે અને અનુરૂપ નાભિ $S$ છે. જો $S$ માંથી $x$-અક્ષ પરનો લંબ $P$ માંથી પસાર થતો હોય, તો $E$ ના નાભિલંબની લંબાઇ .......................... છે.
એક ઉપવલય પરનું બિંદુ $(4, -1)$ ને રેખા $x + 4y - 10 = 0$ સ્પર્શેં છે જો તેની અક્ષો યામાક્ષો સાથે સાંપતી હોય, તો તેનું સમીકરણ $(a > b)$