ઉપવલય $2x^2 + 5y^2 = 20$ ની જીવાનું સમીકરણ મેળવો કે જે બિંદુ $(2, 1)$ આગળ દ્વિભાજીત થાય..
$4x + 5y + 13 = 0$
$4x + 5y - 13=0$
$5x + 4y + 13 = 0$
એકપણ નહિ
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ $b=3,\,\, c=4,$ કેન્દ્ર ઊગમબિંદુ તથા નાભિઓ $x-$ અક્ષ પર હોય.
ઉપવલય $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, ની અંતર્ગત, જેનું એક શિરોબિંદુ આ ઉપવલયની મુખ્ય અક્ષનું એક અંત્ય બિંદુ હોય અને જેની એક બાજુ $y$-અક્ષને સમાંતર હોય તેવા ત્રિકોણનું મહત્તમ ક્ષેત્રફળ $6 \sqrt{3}$ છે. તો આ ઉપવલયની ઉત્કેન્દ્રતા ....... છે,
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષનાં અંત્યબિંદુઓ $(±3,\,0)$, ગૌણ અક્ષનાં અંત્યબિંદુઓ $(0,\,±2)$
અહી ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$ બિંદુ $\left(\sqrt{\frac{3}{2}}, 1\right)$ માંથી પસાર થાય છે અને ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}} $ આપેલ છે . જો વર્તુળનું કેન્દ્ર એ ઉપવલય $E$ ની નાભી $\mathrm{F}(\alpha, 0), \alpha>0$ હોય અને ત્રિજ્યા $\frac{2}{\sqrt{3}}$ આપેલ છે . વર્તુળએ ઉપવલય $\mathrm{E}$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ માં છેદે છે તો $\mathrm{PQ}^{2}$ ની કિમંત મેળવો.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષ $x-$ અક્ષ પર હોય અને બિંદુઓ $(4, 3)$ અને $(6, 2)$ માંથી પસાર થાય