English
Hindi
9.Straight Line
medium

ચલિત રેખા $\frac{x}{a} + \frac{y}{b} = 1, a + b = 10$ માટે, યામ અક્ષો વચ્ચે આ રેખાના અંત: ખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ

A

$10x + 5y = 1$

B

$x + y = 10$

C

$x + y = 5$

D

$5x + 10y = 1$

Solution

Since $a+b=10$ hence the equation of the line can be re-written as

$\frac{x}{a}+\frac{y}{10-a}=1 \ldots \text { (i) }$

Now the line intersects the axes at

$A=(a, 0) \text { and } B=(0,10-a)$

The midpoint of $A B$ is

$G =\frac{ a +0}{2}, \frac{0+10- a }{2}$

$=\left(\frac{ a }{2}, \frac{10- a }{2}\right)$

Hence

$(x, y)=\left(\frac{a}{2}, \frac{10-a}{2}\right)$

Therefore

$x=\frac{a}{2} \ldots \text { (i) and } y=\frac{10-a}{2} \ldots \text { (ii) }$

$y=5-\frac{a}{2}$

$y=5-x \ldots(\text { from i) }$

Hence

$x+y=5$

Thus the required locus is $x+y=5$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.