$25$ ચોરસ એકમ ક્ષેત્રફળવાળા એક ચતુષ્કોણની બે બાજુઓનું સમીકરણ $3x - 4y = 0$ અને $4x + 3y = 0$ છે. ચતુષ્કોણની બાકીની બે બાજુઓનું સમીકરણ :
$3x - 4y \pm 25 = 0, 4x + 3y \pm 25 = 0$
$3x - 4y \pm 5 = 0, 4x + 3y \pm 5 = 0$
$3x - 4y \pm 5 = 0, 4x + 3y \pm 25 = 0$
એકપણ નહિ
જો ત્રિકોણનું પરિકેન્દ્ર ઉંગમબિંદુ પર આવેલ હોય અને તેનું મધ્યકેન્દ્ર બિંદુ $(a^2 + 1 , a^2 + 1 )$ અને $(2a, - 2a)$ જોડતા રેખાખંડના મધ્યબિંદુ પર આવેલ હોય જ્યાં $a \ne 0$, તો કોઈ પણ $a$ ની કિમત માટે ત્રિકોણનું મધ્યકેન્દ્ર ક્યાં આવેલ હોય?
$P (2, 2), Q (6, -1)$ અને $R (7, 3) $ શિરોબિંદુવાળા ત્રિકોણની મધ્યગા $PS$ લો. $ (1, -1)$ માંથી પસાર થતી અને $ PS $ ને સમાંતર રેખાનું સમીકરણ....
રેખાઓ $xy = 0$ અને $x + y = 1$દ્વારા બનતા ત્રિકોણનું લંબકેન્દ્ર મેળવો.
વિધાન: જો ત્રિકોણનું મધ્યકેન્દ્ર અને પરિકેન્દ્ર તેના લંબકેન્દ્ર તરીકે ઓળખાય તો તે શોધી શકાય છે.કારણ : ત્રિકોણનું મધ્યકેન્દ્ર, લંબકેન્દ્ર અને પરિકેન્દ્ર સમરેખ હોય.
જો બિંદુઓ $({a_1},{b_1})$ અને $({a_2},{b_2})$ થી સમાન અંતરે આવેલ બિંદુનો બિંદુપથનું સમીકરણ $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, હોય તો $‘c’$ ની કિમંત મેળવો.