જે ઉપવલયનું નાભિકેન્દ્ર $(6, 7),$ નિયામિકા $x + y + 2 = 0$ અને $e\,\, = \,\,1/\sqrt 3 $ હોય, તેનું સમીકરણ :
$5x^2 + 2xy + 5y^2 - 76x - 88y + 506 = 0$
$5x^2 - 2xy + 5y^2 - 76y - 88y + 506 = 0$
$5x^2 - 2xy + 5y^2 + 76x - 88y + 506 = 0$
એકપણ નહિ
ઉપવલયની પ્રધાન અક્ષના અંત્યબિંદુ $A$ અને ગૌણ અક્ષના અંત્યબિંદુ $B$ માંથી પસાર થતી રેખા તેના સહાયક વૃતને બિંદુ $M$ આગળ સ્પર્શેં છે તો $A, M$ અને ઉગમ બિંદુ $O$ આગળ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ-
ધારોકે રેખા $2 x+3 y-\mathrm{k}=0, \mathrm{k}>0$ એ $x$-અક્ષ અને $y$-અક્ષ ને અનુક્રમે બિંદુઓ $A$ અને $B$ માં છેદે છે. જો રેખા ખંડ $A B$ ને વ્યાસ તરીકે લેતા બનતા વર્તુળ સમીકરણ $x^2+y^2-3 x-2 y=0$ હોય અને ઉપવલય $x^2+9 y^2=\mathrm{k}^2$ ના નાભિલંબ ની લંબાઈ $\frac{\mathrm{m}}{\mathrm{n}}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજય છે, તો $2 m+n=$ ...........
જો $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ અને $16{x^2} + 25{y^2} = 400$, તો $ P{F_1} + P{F_2}$ = .. . . .
આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ
$\frac{x^{2}}{36}+\frac{y^2} {16}=1$
સમીકરણ $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ક્યારે ઉપવલય દર્શાવે ?