જો ઉપવલય $x^{2}+4 y^{2}=4$ નો સ્પર્શકએ મુખ્ય અક્ષના અંત્ય બિંદુ આગળ ના સ્પર્શકોને  બિંદુ $\mathrm{B}$ અને $\mathrm{C}$ આગળ મળે છે તો વર્તુળ  કે જેનો વ્યાસ $\mathrm{BC}$ હોય તે ..  . બિંદુમાંથી પસાર થાય.

  • [JEE MAIN 2021]
  • A

    $(-1,1)$

  • B

    $(1,1)$

  • C

    $(\sqrt{3}, 0)$

  • D

    $(\sqrt{2}, 0)$

Similar Questions

ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \,\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતા અને કેન્દ્ર (0, 3) ધરાવતા વર્તૂળનું સમીકરણ :

ઉપવલયના પ્રમાણિત સમીકરણ ($y-$અક્ષ પ્રત્યે) માં ગૌણ અક્ષની લંબાઈ  $\frac{4}{\sqrt{3}} $ છે. તો ઉપવલય રેખા $x+6 y=8 $ સ્પર્શે છે તો ઉકેન્દ્રીતા મેળવો.

  • [JEE MAIN 2020]

ધારો કે $f(x)=x^2+9, g(x)=\frac{x}{x-9}$ અને $\mathrm{a}=f \circ g(10), \mathrm{b}=g \circ f(3)$. જો $\mathrm{e}$ અને $l$ એ ઉપવલય $\frac{x^2}{\mathrm{a}}+\frac{y^2}{\mathrm{~b}}=1$ ની અનુક્રમે ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ દર્શાવે, તો $8 \mathrm{e}^2+l^2=$.................

  • [JEE MAIN 2024]

$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો. 

અક્ષો વચ્ચે અંત:ખંડ કાપતાં ઉપવલયના સ્પર્શકોના ભાગના મધ્યબિંદુનો બિંદુપથ :