ત્રિકોણની ત્રણ બાજુઓને વ્યાસ તરીકે લઈ દોરેલા ત્રણ વર્તૂળોનું મૂલાક્ષ કેન્દ્ર (રેડિકલ કેન્દ્ર) . .. .
ત્રિકોણનું અંત:કેન્દ્ર
ત્રિકોણનું ક્ષેત્રકેન્દ્ર
ત્રિકોણનું લંબકેન્દ્ર
ત્રિકોણનું પરિકેન્દ્ર
જો ચલિત રેખા $3 x+4 y=\alpha$ એ બે વર્તુળો $(x-1)^{2}+(y-1)^{2}=1$ અને $(x-9)^{2}+(y-1)^{2}=4$ ની વચ્ચે એવી રીતે આવેલ છે કે જેથી તે બંને વર્તુળની એકપણ જીવાને છેદતી નથી તો $\alpha$ ની બધીજ પૃણાંક કિમંતોનો સરવાળો મેળવો.
$r$ ત્રિજ્યાવાળા ત્રણ વર્તૂળો એકબીજાને સ્પર્શેં છે. આપેલ ત્રણેય વર્તૂળોને અંદરતી સ્પર્શતા વર્તૂળની ત્રિજ્યા :
બિંદુ $(a, b)$ માંથી પસાર થતા તથા વર્તૂળ ${x^2} + {y^2} = {p^2}$ ને લંબચ્છેદી હોય તેવા વર્તૂળના કેન્દ્રનો બિંદુગણનું સમીકરણ મેળવો.
ધારો કે વર્તૂળો $x^2 + (y - 1)^2 = 9, (x - 1)^2 + y^2 = 25$ છે, કે જેથી
$x^{2}+ y^{2}+ c^{2} =2ax$ અને $x^{2} + y^{2} + c^{2} - 2by = 0$ સમીકરણવાળા વર્તૂળો એકબીજાને બહારથી ક્યારે સ્પર્શેં ?