10-1.Circle and System of Circles
hard

જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.

A

$25$

B

$36$

C

$30$

D

$42$

(JEE MAIN-2020)

Solution

Common tangent is $\mathrm{S}_{1}-\mathrm{S}_{2}=0$

$\Rightarrow-6 x+8 y-8+k=0$

Use $\mathrm{p}=\mathrm{r}$ for $\mathrm{I}^{\text {st }}$ circle

$\Rightarrow \frac{|-18-8+k|}{10}=1$

$\Rightarrow \mathrm{k}=36$ or $16 \Rightarrow \mathrm{k}_{\max }=36$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.