જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.
$25$
$36$
$30$
$42$
જો વર્તુળો ${x^2}\, + {y^2}\, - 16x\, - 20y\, + \,164\,\, = \,\,{r^2}$ અને ${(x - 4)^2} + {(y - 7)^2} = 36$ બે ભિન્ન બિંદુઓમાં છેદે તો ,
વર્તૂળો ${x^2} + {y^2} + 13x - 3y = 0$ અને $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ ના છેદબિંદુ અને બિંદુ $(1, 1)$ માંથી પસાર થતા વર્તૂળનું સમીકરણ મેળવો
બે વર્તૂળો $2x^{2} + 2y^{2} + 7x - 5y + 2 = 0$ અને $x^{2}+ y^{2} - 4x + 8y - 18 = 0 $ ની સામાન્ય જીવાની લંબાઇ.....
ધારોકે $C: x^2+y^2=4$ અને $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ એ બે વર્તુળો છે. જો વર્તુળો $C^{\prime \prime}$ અને $C^{\prime}$ બે ભિન્ન બિંદુઓમાં છેદે તેવી $\lambda$ ની તમામ કિંમતોનો ગણ ${R}-[a, b]$ હોય, તો બિંદુ $(8 a+12,16 b-20)$ એ_____________ વક્ર પર આવેલું છે.
બિદુઓ $(0, 0)$ અને $(1, 0)$ માંથી પસાર થતા અને વર્તૂળ ${x^2} + {y^2} = 9$ સ્પર્શતું હોય તેવા વર્તૂળનું કેન્દ્ર મેળવો.