જો વક્રો $x^{2}-6 x+y^{2}+8=0$ અને $\mathrm{x}^{2}-8 \mathrm{y}+\mathrm{y}^{2}+16-\mathrm{k}=0,(\mathrm{k}>0)$ એકબીજાના એક બિંદુમાં સ્પર્શે છે તો $\mathrm{k}$ ની મહતમ કિમંત મેળવો.
$25$
$36$
$30$
$42$
વર્તૂળ $x^{2} + y^{2} + (2p + 3)x + (3 - 2py) y + p - 3 = 0$ ની ત્રિજ્યા કરતાં બમણી ત્રિજ્યા ધરાવતાં અને ઉગમબિંદુ માંથી વર્તૂળ પસાર થાય છે તો વર્તુળનું સમીકરણ મેળવો.
બે વર્તૂળો $x^2 + y^2 = ax$ અને $x^2 + y^2 = c^2 (c > 0)$ એકબીજાને ક્યારે સ્પર્શેં ?
જો વર્તૂળ, બિંદુ $(a, b)$ માંથી પસાર થાય અને વર્તૂળ $x^{2} + y^{2} = 4$ ને લંબરૂપે છેદે, તો તેના કેન્દ્રનો બિંદુ પથ....
ત્રણ વર્તુળ જેમની ત્રિજ્યા અનુક્રમે $a, b, c\, ( a < b < c )$ છે તે એકબીજાને બહારથી સ્પર્શે છે જો તેમનો સામાન્ય સ્પર્શક $x -$ અક્ષ હોય તો
$P$ એ એક બિંદુ $(a, b)$ કે જે પ્રથમ ચરણમાં આવેલ છે જો બે વર્તુળો બિંદુ $P$ માંથી પસાર થાય અને બંને અક્ષોને કાટકોણ ખૂણે સ્પર્શે તો