10-1.Circle and System of Circles
hard

વર્તૂળ દ્વારા રેખા પર બનાવેલ અંત:ખંડ $AB$ હોય તો $AB$ જેનો વ્યાસ હોય તેવા વર્તૂળનું સમીકરણ મેળવો.

A

${x^2} + {y^2} - x - y = 0$

B

${x^2} + {y^2} - 2x - y = 0$

C

${x^2} + {y^2} - x + y = 0$

D

${x^2} + {y^2} + x - y = 0$

(IIT-1996)

Solution

(a) Equation of any circle passing through the point of intersection of ${x^2} + {y^2} – 2x = 0$ and $y = x$ is

${x^2} + {y^2} – 2x + \lambda (y – x) = 0$

or ${x^2} + {y^2} – (2 + \lambda )x + \lambda y = 0$

Its center is $\left( {\frac{{2 + \lambda }}{2},\;\frac{{ – \lambda }}{2}} \right)$.

For $AB$ to be the diameter of the required circle, the centre must lie on $AB$

$i.e.$, $\frac{{2 + \lambda }}{2} = – \frac{\lambda }{2} $

$\Rightarrow \lambda = – 1$.

Thus the required equation of the circle is

${x^2} + {y^2} – 2x – y + x = 0$ or ${x^2} + {y^2} – x – y = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.