English
Hindi
10-1.Circle and System of Circles
medium

$x$-અક્ષ સાથે $60°$ ના ખૂણે ઢળેલા વર્તૂળ $x^2 + y^2 = 25$ ના સ્પર્શકનું સમીકરણ :

A

$y\,\, = \,\,\sqrt 3 x\,\, \pm \,\,10$

B

$y\,\, = \,\,\sqrt 3 x\,\, \pm \,\,2$

C

$\sqrt {3y} \,\, = \,\,x\,\, \pm \,\,10$

D

એકપણ નહિ

Solution

Let the equation of the tangent be $y=m x+c$

Since inclination $=60$ degrees

$\Rightarrow m =\tan 60=\sqrt{3}$

So, the equ. of the tangent will be $y=\sqrt{3} x+c$

Now putting $y =\sqrt{3} x + c$ in given equation of circle, we get

$\Rightarrow x ^2+(\sqrt{3} x +c)^2=25$

$\Rightarrow 4 x ^2+2 \sqrt{3} c x +c^2-25=0$

Now since we need to find value of c for equ. to become tangent

$\Rightarrow$ The above quadratic equ. must have real and equal roots

$\Rightarrow D =0$

$\Rightarrow(2 \sqrt{3} c )^2-4(4)\left( c ^2-25\right)=0$

$\Rightarrow 4 c ^2=400$

$\Rightarrow c =\pm 10$

So, the equation of the tangent is $y=\sqrt{3} x=10$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.