- Home
- Standard 11
- Mathematics
$x$-અક્ષ સાથે $60°$ ના ખૂણે ઢળેલા વર્તૂળ $x^2 + y^2 = 25$ ના સ્પર્શકનું સમીકરણ :
$y\,\, = \,\,\sqrt 3 x\,\, \pm \,\,10$
$y\,\, = \,\,\sqrt 3 x\,\, \pm \,\,2$
$\sqrt {3y} \,\, = \,\,x\,\, \pm \,\,10$
એકપણ નહિ
Solution
Let the equation of the tangent be $y=m x+c$
Since inclination $=60$ degrees
$\Rightarrow m =\tan 60=\sqrt{3}$
So, the equ. of the tangent will be $y=\sqrt{3} x+c$
Now putting $y =\sqrt{3} x + c$ in given equation of circle, we get
$\Rightarrow x ^2+(\sqrt{3} x +c)^2=25$
$\Rightarrow 4 x ^2+2 \sqrt{3} c x +c^2-25=0$
Now since we need to find value of c for equ. to become tangent
$\Rightarrow$ The above quadratic equ. must have real and equal roots
$\Rightarrow D =0$
$\Rightarrow(2 \sqrt{3} c )^2-4(4)\left( c ^2-25\right)=0$
$\Rightarrow 4 c ^2=400$
$\Rightarrow c =\pm 10$
So, the equation of the tangent is $y=\sqrt{3} x=10$