બિંદુ $(4, 5)$ માંથી વર્તૂળ પર સ્પર્શક દોરવામાં આવે છે. આ સ્પર્શકો અને ત્રિજયાઓ દ્વારા બનતા ચતુષ્કોણનું ક્ષેત્રફળ ................ $\mathrm{sq.\, units}$ માં મેળવો.
$15$
$75$
$8$
$4$
જો રેખાઓ $3x - 4y + 4 = 0$ અને $6x - 8y - 7 = 0$ વર્તૂળના સ્પર્શકો હોય તો તેની ત્રિજયા મેળવો.
બિંદુ $(0,1)$ માંથી પસાર થતું અને પરવલય $y=x^{2}$ ને બિંદુ $(2,4)$ આગળ સ્પર્શતા વર્તુળનું કેન્દ્ર શોધો
કેન્દ્ર $(2,3)$ અને ત્રિજ્યા $4$ વાળું વર્તુળ રેખા $x+y=3$ ને બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $P$ અને $Q$ પાસેના સ્પર્શકો બિંદુ $S(\alpha, \beta)$ માં છેદે, તો $4 \alpha-7 \beta=....................$
ધારોકે $5$ ત્રિજ્યાવાળું એક વર્તુળ, $x$-અક્ષની નીચે આવેલું છ. રેખા $L_{1}: 4 x+3 y+2=0$ એ વર્તુળ $C$ ના કેન્દ્ $P$ માંથી પસાર થાય છે અને રેખા $L_{2}: 3 x-4 y-11=0$ ને છદે છે. રેખા $L_{2}$ એ $C$ ને $Q$ આગળ સ્પર્શ છે. તો $P$ નું રેખા $5 x-12 y+51=0$ થી અંતર $\dots\dots\dots$છે.
અહી વર્તુળ $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ ની જીવા $A B$ ની લંબાઈ $12$ છે. જો વર્તુળપર ના બિંદુ $A$ અને $B$ આગળના સ્પર્શકો બિંદુ $P$ માં છેદે છે તો બિંદુ $P$ નું જીવા $AB$ થી અંતરના પાંચ ગણા $.......$ થાય.