- Home
- Standard 11
- Mathematics
જો ત્રિકોણની બાજુઓ $y = mx + a, y = nx + b$ અને $x = 0,$ હોય, તો તેનું ક્ષેત્રફળ :
$\frac{{1\,\,{{(a - b)}^2}}}{{2\,\,(m - n)}}$
$\frac{{1\,\,{{(a - b)}^2}}}{{2\,\,(m + n)}}$
$\frac{{1\,\,{{(a + b)}^2}}}{{2\,\,(m - n)}}$
એકપણ નહિ
Solution
Given lies are
$L_1: y=m x+a$
$L_2: y=n x+b$
Line $L_1$ intersects $y-$ axis at $A=(0, a)$
Line $L_2$ intersects $y-$ axis at $B=(0, b)$
Comparing the given two equations,
$m x+a=n x+b$
$\Rightarrow n x-m x=a-b$
$\Rightarrow x=\frac{a-b}{n-m}$
Substituting above value in $L_1$ we get,
$y=m \frac{a-b}{n-m}+a$
$\Rightarrow y=\frac{m a-m b+n a-m a}{n-m}$
$\Rightarrow y=\frac{n a-m b}{n-m}$
$\therefore$ The co-ordinates of intersection of the lines is $C =\left(\frac{a-b}{ n – m }, \frac{ na – mb }{ n – m }\right)$
Distance between $A$ and $B$
$d=\sqrt{(0-b)^2+(a-b)^2}$
$\Rightarrow d=\sqrt{(a-b)^2}$
$\Rightarrow d=a-b$
Length of perpendicular from $C$ on the $y$ – axis.
$p=\frac{a-b}{n-m}$
$\therefore$ Area of the triangle fromed by the lines $L _1, L _2$ and $y -$ axis
$A=\left|\frac{1}{2} d p\right|$
$\Rightarrow A=\frac{1}{2} \times(a-b) \times \frac{a-b}{n-m}$