ઉગમબિંદુ આગળ કેન્દ્રવાળા ઉપવલયની ઉત્કેન્દ્રતા $1/2$ છે. જો એક નિયામિકા $x = 4$ હોય તો ઉપવલયનું સમીકરણ :
$3x^2 + 4y^2 = 1$
$3x^2 + 4y^2 = 12$
$4x^2 + 3y^2 =12$
$4x^2 + 3y^2 = 1$
જો ઉપવલય $x^{2}+4 y^{2}+2 x+8 y-\lambda=0$ નાં નાભિલંબ લંબાઈ $4$ હોય અને તેની મુખ્ય અક્ષની લંબાઈ $l$ હોય, તો $\lambda+l=$ .........
ઉપવલય $\frac{{{x^2}}}{{27}} + {y^2} = 1$ પર બિંદુ $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ કે જયાં $\theta \in (0,\;\pi /2)$ માંથી સ્પર્શક દોરવામાં આવે છે.તો $\theta $ ની . . . . કિંમત માટે સ્પર્શકે અક્ષો પર બનાવેલ અંત:ખંડનો સરવાળો ન્યૂનતમ થાય.
ઉપવલયો $E_k: k x^2+k^2 y^2=1, k=1,2, \ldots, 20$ ધ્યાને લો. જેનું એક અંત્યબિંદુ પ્રધાન અક્ષ પર અને બીજું ગૌણ અક્ષ પર હોય તેવી, ઉપવલય $E_k$ ની યાર જીવાઆને સ્પર્શતું વર્તુળ ધારો કે $C_K$ છે.જો $r_k$ એ વર્તુળ $C_k$ ની ત્રિજ્યા હોય, તો $\sum \limits_{k=1}^{20} \frac{1}{r_k^2}$ નું મૂલ્ય $........$ છે.
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ની નાભિઓ અને અતિવલય
$\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભીઓ સમાન હોય તો ${b^2}$ નું મૂલ્ય:
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(0,\,\pm 13),$ નાભિઓ $(0,\,±5)$