ધારો કે $L$ એ વક્રો $4 x^{2}+9 y^{2}=36$ અને $(2 x)^{2}+(2 y)^{2}=31$ ની સામાન્ય સ્પર્શરેખા છે. તો રેખા $L$ ના ઢાળનો વર્ગ ....... થાય.
$3$
$6$
$5$
$4$
ઉપવલય કે જેની અક્ષો યામાક્ષોની અક્ષો હોય તથા જે બિંદુ $(-3,1) $ માંથી પસાર થાય અને ઉત્કેન્દ્રતા $\sqrt {\frac{2}{5}} $ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(\pm 5,\,0),$ નાભિઓ $(\pm 4,\,0)$
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ પ્રધાન અક્ષ $x-$ અક્ષ પર હોય અને બિંદુઓ $(4, 3)$ અને $(6, 2)$ માંથી પસાર થાય
ઉપવલય $2x^2 + 5y^2 = 20$ ની સાપેક્ષે બિંદુ $(4, -3)$ નું સ્થાન :
જો $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, હોય તો અનુક્રમે $x$ અને $y$ એ . . . . અંતરાલમાં આવે.