ઉપવલયની ઉકેન્દ્રિતા $\frac{1}{2}$ અને એક નાભિના યામ $P\left( {\frac{1}{2},\;1} \right)$ છે.જો બિંદુ $P$ ની નજીકની એક નિયામીકા એ વર્તૂળ ${x^2} + {y^2} = 1$ અને અતિવલય ${x^2} - {y^2} = 1$ નો સામાન્ય સ્પર્શક બને છે ,તો ઉપવલયનું પ્રમાણિત સમીકરણ મેળવો.
$\frac{{{{(x - 1/3)}^2}}}{{1/9}} + \frac{{{{(y - 1)}^2}}}{{1/12}} = 1$
$\frac{{{{(x - 1/3)}^2}}}{{1/9}} + \frac{{{{(y + 1)}^2}}}{{1/12}} = 1$
$\frac{{{{(x - 1/3)}^2}}}{{1/9}} - \frac{{{{(y - 1)}^2}}}{{1/12}} = 1$
$\frac{{{{(x - 1/3)}^2}}}{{1/9}} - \frac{{{{(y + 1)}^2}}}{{1/12}} = 1$
જો $3 x+4 y=12 \sqrt{2}$ એ કોઈક $a \in \mathrm{R},$ માટે ઉપવલય $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{9}=1$ નો સ્પર્શક હોય તો બંને નાભી વચ્ચેનું અંતર મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો કોઈપણ સ્પર્શક અક્ષો પર $h$ અને $k$ લંબાઈનો અંત:ખંડ કાપે, તો.....
ઉપવલય $3x^{2} + 4y^{2} = 12$ ના સ્પર્શકોનું સમીકરણ શોધો કે જે રેખા $y + 2x = 4$ ને લંબ હોય.
$x = 2 (cos\, t + sin\, t), y = 5 (cos\, t - sin\, t) $ દ્વારા દર્શાવેલો શાંકવ .....
વર્તૂળ $(x - 1)^2 + y^2 = 1$ ના વ્યાસને ગૌણ અક્ષની અર્ધલંબાઈ તરીકે અને વર્તૂળ $x^2 + (y - 2)^2 = 4$ ના વ્યાસને પ્રધાન અક્ષની અર્ધ લંબાઈ તરીકે લઈને એક ઉપવલય દોર્યો. જો ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને તેની અક્ષો યામાક્ષો હોય, તો ઉપવલયનું સમીકરણ મેળવો.