જો રેખા $y = mx + 1$ એ વર્તૂળ $x^2 + y^2+ 3x = 0$ ને અક્ષથી સમાન અંતરે અને વિરૂદ્ધ બાજુએ બે બિંદુઓ આગળ મળે, તો?
$2m - 3 = 0$
$2m + 3 = 0$
$3m + 2 = 0$
$3m - 2 = 0$
જો ધન $x-$અક્ષ તથા વર્તુળ $(x-2)^{2}+(y-3)^{2}=25$ ના $(5, 7)$ બિંદુએ અભિલંબ અને સ્પર્શકથી બનતા ત્રિકોણનું ક્ષેત્રફળ $A$ હોય, તો $24A =........ .$
ધારો કે વર્તુળ $C _{1}: x^{2}+y^{2}=2$ ના બિંદુ $M (-1,1)$ આગળનો સ્પર્શક એ વર્તુળ $C _{2}:(x-3)^{2}+(y-2)^{2}=5$ ને બે ભિન્ન બિંદુઓ $A$ અને $B$ માં છેદ્દે છે. ને $C_{2}$ ના બિંદુઓ $A$ અને $B$ આગળના સ્પર્શકો $N$ માં છેદે, તો ત્રિકોણ $ANB$ નું ક્ષેત્રફળ$=\dots\dots$
વર્તુળ $x^2 + y^2 = 4$ પરના બિંદુ $(\sqrt 3,1)$ પર આંતરેલ અભિલંબ અને સ્પર્શક તથા $x -$ અક્ષ થી બનતા ત્રિકોણનું ક્ષેત્રફળ ચો. એકમમાં મેળવો
ધારો કે વર્તૂળો, બિંદુ $ (-1, 1)$ માંથી પસાર થાય છે અને $x$ અક્ષનો સ્પર્શકો છે. જો $(h , k) $ વર્તૂળના કેન્દ્રના યામ હોય, તો $k$ ના મૂલ્યનો ગણ કયા અંતરાલ દ્વારા દર્શાવાય ?
જો બિંદુ $P$ માંથી વર્તૂળો $x^{2} + y^{2} = a^2 \,\,, x^2 + y^{2} = b^2$ અને $x^{2} + y^{2} = c^{2}$ પર દોરેલા સ્પર્શકોની લંબાઈનો વર્ગ સમાંતર શ્રેણીમાં હોય, તો.....