વર્તુળ $C_{1}$ એ ઉગમબિંદુ $O$ માંથી પસાર થાય છે અને ધન $x-$ અક્ષ પર $4$ લંબાઇનો વ્યાસ છે. રેખા $y =2 x$ એ વર્તુળ $C _{1}$ પર જીવા $OA$ બનાવે છે. અહી $C _{2}$ માં $OA$ વ્યાસ છે. જો $C _{2}$ નો બિંદુ $A$ આગળનો સ્પર્શક $x$-અક્ષને બિંદુ $P$ અને $y$-અક્ષને $Q$ માં છેદે છે તો $QA : AP$ ની કિમંત મેળવો.
$1:4$
$1: 5$
$2: 5$
$1: 3$
ધારો કે $y=x+2,4 y=3 x+6^2 y^2 3 y=4 x+1$ અને $3 y=4 x+1$ એ વર્તુળ $(x- h )^2+(y- k )^2= r ^2$ ની ત્રણ સ્પર્શ રેખાઓ છે.તો $h+k=..........$
રેખા $x + 2y = 1$ એ યામાક્ષોને બિંદુ $A$ અને $B$ આગળ છેદે છે જો વર્તુળ બિંદુ $A, B$ અને ઉંગમબિંદુમાંથી પસાર થતું હોય તો બિંદુ $A$ અને $B$ થી વર્તુળના ઉંગમબિંદુ એ અંતરેલા સ્પર્શકના લંબઅંતરનો સરવાળો મેળવો.
$\lambda$ ના કયા મુલ્ય માટે રેખા $3x - 4y = \lambda$ એ વર્તૂળ $x^2 + y^2 - 4x - 8y - 5 = 0$, ને સ્પર્શેં ?
બિંદુ$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right)$ માંથી વર્તૂળ $x^2 + y^2 = 9$ ના અભિલબનું સમીકરણ....
વિધાન $1$ : જે વર્તુળની ત્રિજ્યા $\sqrt {10} $ અને વ્યાસ રેખા $2x + y = 5$ પર આવેલ હોય તેવું એક જ વર્તુળનું સમીકરણ $x^2 + y^2 - 6x +2y = 0$
વિધાન $2$ : સમીકરણ $2x + y = 5$ એ વર્તુળ $x^2 + y^2 -6x+2y = 0$ ને લંબ છે