10-1.Circle and System of Circles
hard

વર્તુળ $C_{1}$ એ ઉગમબિંદુ $O$ માંથી પસાર થાય છે અને ધન $x-$ અક્ષ પર $4$ લંબાઇનો વ્યાસ છે. રેખા $y =2 x$ એ વર્તુળ $C _{1}$ પર  જીવા $OA$ બનાવે છે. અહી  $C _{2}$ માં $OA$ વ્યાસ છે. જો $C _{2}$ નો બિંદુ  $A$ આગળનો સ્પર્શક $x$-અક્ષને બિંદુ $P$ અને $y$-અક્ષને $Q$ માં છેદે છે તો $QA : AP$ ની કિમંત મેળવો.

A

$1:4$

B

$1: 5$

C

$2: 5$

D

$1: 3$

(JEE MAIN-2022)

Solution

$C _{2}$ is a circle with $OA$ as diameter.

So, tangent at $A$ on $C _{2}$ is perpendicular to $OR$

Let $OA =\ell$

$\therefore \frac{ QA }{ AP }=\frac{\ell \cot \theta}{\ell \tan \theta}$

$=\frac{1}{\tan ^{2} \theta}=\frac{1}{4}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.