English
Hindi
10-2. Parabola, Ellipse, Hyperbola
medium

જેથી નાભિઓ $(6, 5), (-4, 5)$ હોય અને ઉત્કેન્દ્રતા $5/4$ હોય તેવા અતિવલયનું સમીકરણ :

A

$\frac{{{{\left( {x\,\, - \,\,1} \right)}^2}}}{{16}}\,\, - \,\,\frac{{{{\left( {y\, - \,\,5} \right)}^2}}}{9}\,\, = \,1$

B

$\frac{{{x^2}}}{{16}}\,\, - \,\,\frac{{{y^2}}}{9}\,\, = \,\,1$

C

$\frac{{{{\left( {x\,\, - \,\,1} \right)}^2}}}{{16}}\,\, - \,\,\frac{{{{\left( {y\,\, - \,\,5} \right)}^2}}}{9}\,\, = \,\, - 1$

D

આપેલ પૈકી એક પણ નહિ

Solution

Let the centre of hyperbola be $(\alpha, \beta)$

As $y=5$ line has the foci, it also has the major axis.

$\therefore \frac{(x-\alpha)^2}{a^2}-\frac{(y-\beta)^2}{b^2}=1$

Midpoint of foci $=$ centre of hyperbola

$\therefore \alpha=1, \beta=5$

Given, $e=\frac{5}{4}$.

We know that foci is given by $(\alpha=a, \beta)$

$\therefore \alpha+a a =6$

$\Rightarrow 1+\frac{5}{4} a =6 \Rightarrow a =4$

Using $b^2=a^2\left(e^2-1\right)$

$\Rightarrow b^2=16\left(\frac{25}{16}-1\right)=9$

$\therefore$ Equation of hyperbola $\Rightarrow \frac{( x -1)^2}{16}-\frac{( y -5)^2}{9}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.