ઉપવલય $x^2 + 4y^2 = 16$ પરના બિંદુ $P$ આગળનો અભિલંબ એ $x$-અક્ષને $Q$ આગળ મળે છે. જો $M$ એ રેખાખંડ $PQ$ નું મધ્યબિંદુ હોય, તો $M$ નો બિંદુપથ એ આપેલ ઉપવલયના નાભિલંબને કયા બિંદુઓ આગળ છેદે ?
$\left( { \pm \,\,\frac{{3\sqrt 5 }}{2},\,\, \pm \,\,\frac{2}{7}} \right)$
$\left( { \pm \,\,\frac{{3\sqrt 5 }}{2},\,\, \pm \,\,\frac{{\sqrt {19} }}{4}} \right)$
$\left( { \pm \,\,2\sqrt 3 ,\,\, \pm \,\,\frac{1}{7}} \right)$
$\left( { \pm \,\,2\sqrt 3 ,\,\, \pm \,\,\frac{{4\,\sqrt 3 }}{7}} \right)$
ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$ ના બિંદુ $\left( {2,\frac{3}{2}} \right)$ આગળનો અભિલંબ પરવલયને સ્પર્શે છે તો પરવલયનું સમીકરણ ..... થાય
જો ઉપવલયને વર્તૂળ ${\left( {x - 1} \right)^2} + {y^2} = 1$ ના વ્યાસને અર્ધ-ગૌણ અક્ષ તરીકે લેવામાં આવે છે અને વર્તૂળ ${x^2} + {\left( {y - 2} \right)^2} = 4$ ના વ્યાસને અર્ધ-પ્રધાન અક્ષ તરીકે લેવામાં આવે છે.જો ઉપવલયનું કેન્દ્ર ઊગમબિંદુ હોય અને અક્ષો યામાક્ષો હોય,તો ઉપવલયનું સમીકરણ મેળવો.
ઉપવલય $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ માટે નાભિના યામ, શિરોબિંદુઓ, પ્રધાન અક્ષની લંબાઈ, ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો.
બિંદુ $(4,3)$ તથા ઉપવલય $x^{2}+2 y^{2}=4$ પરનાં બિંદુુઓને જોડતી રૈખાખંડનાં મધ્યબિંદુનો બિંદુપથ એ$\dots\dots\dots$ ઉત્કેન્દ્રતાવાળો ઉપવલય છે.
જો ઉપવલયની નાભીલંબના એક અંત્યબિંદુમાંથી પસાર થતો અભિલંબએ અનુબધ્ધ અક્ષની પરથી પસાર થતી હોય તો ઉપવલયની ઉત્કેન્દ્ર્તા $e$ માટે નીચેનામાંથી શું સાચું છે?