ઉપવલય $x^2 + 4y^2 = 16$ પરના બિંદુ $P$ આગળનો અભિલંબ એ $x$-અક્ષને $Q$ આગળ મળે છે. જો $M$ એ રેખાખંડ $PQ$ નું મધ્યબિંદુ હોય, તો $M$ નો બિંદુપથ એ આપેલ ઉપવલયના નાભિલંબને કયા બિંદુઓ આગળ છેદે ?

  • A

    $\left( { \pm \,\,\frac{{3\sqrt 5 }}{2},\,\, \pm \,\,\frac{2}{7}} \right)$

  • B

    $\left( { \pm \,\,\frac{{3\sqrt 5 }}{2},\,\, \pm \,\,\frac{{\sqrt {19} }}{4}} \right)$

  • C

    $\left( { \pm \,\,2\sqrt 3 ,\,\, \pm \,\,\frac{1}{7}} \right)$

  • D

    $\left( { \pm \,\,2\sqrt 3 ,\,\, \pm \,\,\frac{{4\,\sqrt 3 }}{7}} \right)$

Similar Questions

આપેલ ઉપવલય માટે નાભિના યામ, શિરોબિંદુઓ તથા પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ શોધોઃ

$4 x ^{2}+9 y ^{2}=36$

જો બે ભિનન શાંકવો $x^2+y^2=4 b$ અને $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ ના છેદ બિંદુઓ, વક્ર $y^2=3 x^2$ પર આવેલા હોય, તો આ છેદ બિંદુઓ દ્વારા રચાયેલ લંબચોરસના ક્ષેત્રફળના $3 \sqrt{3}$ ઘણા........................... થાય.

  • [JEE MAIN 2024]

જો ઉપવલય $3x^2 + 4y^2 = 12$ ના બિંદુ $P$ આગળનો અભિલંબ રેખા $2x + y = 4$ ને સમાંતર અને બિંદુ $P$ આગળનો સ્પર્શક બિંદુ $Q(4, 4)$ માંથી પસાર થતો હોય તો $PQ$ = 

  • [JEE MAIN 2019]

ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\, = \,\,1$ની નાભિઓમાંથી પસાર થતું અને $(0, 3)$ કેન્દ્ર વાળા વર્તૂળની ત્રિજ્યા....

બિંદુ $(3, -2)$ આગળ ઉપવલય $4x^2 + 9y^2 = 36$ ના સ્પર્શકનું સમીકરણ શોધો.