ઉપવલય $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ માટે નાભિના યામ, શિરોબિંદુઓ, પ્રધાન અક્ષની લંબાઈ, ગૌણ અક્ષની લંબાઈ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો.
since denominator of $\frac{x^{2}}{25}$ is larger than the denominator of $\frac{y^{2}}{9},$ the major axis is along the $x-$ axis.
Comparing the given equation with $\frac{x^{2}}{a^{2}}$ $+\frac{y^{2}}{b^{2}}$ $=1,$ we get $a=5$ and $b=3$ . Also $c=\sqrt{a^{2}-b^{2}}=\sqrt{25-9}=4$
Therefore, the coordinates of the foci are $(-4,\,0)$ and $(4,\,0),$ vertices are $(-5,\,0)$ and $(5,\,0).$ Length of the major axis is $10$ units length of the minor axis $2b$ is $6$ units and the eccentricity is $\frac{4}{5}$ and latus rectum is $\frac{2 b^{2}}{a}=\frac{18}{5}$.
જે ઉપવલયની નાભિઓ વચ્ચેનું અંતર $ 8 $ હોય અને નિયામિકાઓ વચ્ચેનું અંતર $18 $ હોય, તે ઉપવલયનું સમીકરણ $ (a > b) .....$
જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\,$ ની નાભિઓ, અતિવલય $\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભિઓને સમાન હોય,તો ${b^2}\, = \,\,...........$
ઉપવલય $4x^2 + 9y^2 - 36y + 4 = 0$ નો નાભિલંબની લંબાઈ મેળવો.
બે ઉપવલયો ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ અને ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1$ છે જો તેમની ઉત્કેન્દ્રતાનો ગુણાકાર $\frac {1}{2}$ થાય તો ઉપવલય $E_2$ ની ગૌણઅક્ષની લંબાઈ મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ નો કોઈપણ સ્પર્શક અક્ષો પર $h$ અને $k$ લંબાઈનો અંત:ખંડ કાપે, તો.....