5. Continuity and Differentiation
hard

અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો  $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો  . .. .  .

A

દરેક $x \in(0,2)$ માટે $f^{\prime \prime}(x)=0$

B

કોઈક $x \in(0,2)$ માટે $f^{\prime \prime}(x)=0$

C

કોઈક $x \in[0,2]$ માટે $f^{\prime}(x)=0$

D

કોઈક $x \in(0,2)$ માટે $f^{\prime \prime}(x) > 0$

(JEE MAIN-2021)

Solution

$f(0)=0 \quad f(1)=1$ and $f(2)=2$

Let $\mathrm{h}(\mathrm{x})=f(\mathrm{x})-\mathrm{x}$ has three roots

By Rolle's theorem $\mathrm{h}^{\prime}(\mathrm{x})=f^{\prime}(\mathrm{x})-1$ has at least two roots

$\mathrm{h}^{\prime \prime}(\mathrm{x})=f^{\prime \prime}(\mathrm{x})=0$ has at least one roots

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.