અહી $\mathrm{f}$ એ અંતરાલ $[0,2]$ પર સતત છે અને અંતરાલ $(0,2)$ પર દ્રીતીય વિકલનીય છે . જો  $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ અને $f(2)=2$ હોય તો  . .. .  .

  • [JEE MAIN 2021]
  • A

    દરેક $x \in(0,2)$ માટે $f^{\prime \prime}(x)=0$

  • B

    કોઈક $x \in(0,2)$ માટે $f^{\prime \prime}(x)=0$

  • C

    કોઈક $x \in[0,2]$ માટે $f^{\prime}(x)=0$

  • D

    કોઈક $x \in(0,2)$ માટે $f^{\prime \prime}(x) > 0$

Similar Questions

જો $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ એ વાસ્તવિક વિધેય છે તો $f\,'(x)$ એ $1 < x < 26$ માટે મેળવો.

જો  $27a + 9b + 3c + d = 0$  હોય, તો સમીકરણ $ 4ax^3 + 3bx^2 + 2cx + d = 0 $ નું ઓછામાં ઓછું એક બીજ કોની વચ્ચે હોય ?

ધારો કે $f$ અને $g$ એ $(-2,2)$ પરનાં એવા દ્વિ વિકલનીય ચુગ્મ વિધેયો છે કે જેથી $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ અને $g\left(\frac{3}{4}\right)=0, g(1)=2 .$ ,તો $(-2,2)$ માં, $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ ના ઉકેલોની ન્યૂનતમ સંખ્યા $\dots\dots$છે.

  • [JEE MAIN 2022]

જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ  રોલનું પ્રમેય નું પાલન કરતુ હોય તો     

  • [IIT 2004]

If $f(x)$ એ $[1,\,2]$ માટે રોલના પ્રમેયનું પાલન કરે છે અને $f(x)$ એ $[1,\,2]$ માં સતત છે તો $\int_1^2 {f'(x)dx}   = . . .$