જો $a + b + c = 0 $ હોય, તો $(0, 1) $ અંતરાલમાં સમીકરણ $3ax^2 + 2bx + c = 0 $ કેટલા બીજ ધરાવે ?
ઓછામાં ઓછું એક બીજ
વધુમાં વધુ એક બીજ
બીજ ન હોય
એકપણ નહિ
જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ રોલનું પ્રમેય નું પાલન કરતુ હોય તો
ધારો કે $ f$ એવું વિધેય છે કે બધા વાસ્તવિક $x$ માટે સતત અને વિકલનીય છે.જો બધા $x \in [2, 4] $ માટે $ f(2) = -4 $ અને $f(x) \geq 6$ હોય, તો.......
જો $f(x) = ax^3 + bx^2 + 11x - 6, x \,\in [1, 3]$ એ રોલના પ્રમેયની શરતોનું પાલન કરે અને ${f}'\,\left( {2\, + \,\frac{1}{{\sqrt 3 }}} \right)\, = \,0$ થાય, તો $a$ અને $b$ શોધો.
ધારો કે વિધેય $f$ એ $[\mathrm{a}, \mathrm{b}]$ પર સતત અને $(a, b) $ પર દ્રીતીય વિકલનીય છે. જો દરેક $x \in(a, b)$ ; $f^{\prime}(\mathrm{x})>0$ અને $f^{\prime \prime}(\mathrm{x})<0,$ હોય તો કોઈક $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ ; $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$ $>$
ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in [1, 6]$ માટે $f (1) = -2$ અને $ f'(x) \geq 2$ હોય, તો......