જો $a + b + c = 0 $ હોય, તો $(0, 1) $ અંતરાલમાં સમીકરણ $3ax^2 + 2bx + c = 0 $ કેટલા બીજ ધરાવે ?

  • A

    ઓછામાં ઓછું એક બીજ

  • B

    વધુમાં વધુ એક બીજ

  • C

    બીજ ન હોય

  • D

    એકપણ નહિ

Similar Questions

જો $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$ ,અને $x \in [0,1]$ માં વિધેય $f$ એ  રોલનું પ્રમેય નું પાલન કરતુ હોય તો     

  • [IIT 2004]

ધારો કે $ f$  એવું વિધેય છે કે બધા વાસ્તવિક $x$  માટે સતત અને વિકલનીય છે.જો બધા $x \in  [2, 4] $ માટે  $ f(2) = -4 $ અને  $f(x) \geq  6$  હોય, તો.......

જો $f(x) = ax^3 + bx^2 + 11x - 6, x \,\in [1, 3]$ એ રોલના પ્રમેયની શરતોનું પાલન કરે અને ${f}'\,\left( {2\, + \,\frac{1}{{\sqrt 3 }}} \right)\, = \,0$ થાય, તો $a$ અને $b$ શોધો.

ધારો કે  વિધેય $f$ એ  $[\mathrm{a}, \mathrm{b}]$ પર સતત અને $(a, b) $ પર દ્રીતીય વિકલનીય છે. જો દરેક $x \in(a, b)$ ; $f^{\prime}(\mathrm{x})>0$ અને  $f^{\prime \prime}(\mathrm{x})<0,$ હોય તો કોઈક  $\mathrm{c} \in(\mathrm{a}, \mathrm{b})$ ;  $\frac{f(\mathrm{c})-f(\mathrm{a})}{f(\mathrm{b})-f(\mathrm{c})}$  $>$ 

  • [JEE MAIN 2020]

ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in  [1, 6]$ માટે $f (1) = -2$  અને $ f'(x) \geq 2$  હોય, તો......