જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.
$1$
$-1$
$2$
$-2$
$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.
ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી
$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.
નીચેના બે વિધાનો ધ્યાને લો.
$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$
$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,
ચકાસો કે આપેલ વિધેયમાં રોલનું પ્રમેય લગાડી શકાય કે નહિ : $f(x)=[x],$ $x \in[-2,2]$
અંતરાલ $[1, a]$ પર વિધેય $f(x) = 2x^2 + 3x + 5$ એ $x = 3$ આગળ મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $a$ ની કિમંત મેળવો.
જો $f $ અને $g$ એ $ [0,1] $ પર વિકલનીય વિધેયો હોય તથા $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ અને $f\left( 1 \right) = 6,$તો કોઇ $c \in \left] {0,1} \right[$ માટે