જો $f(x) = ax^3 + bx^2 + 11x - 6, x \,\in [1, 3]$ એ રોલના પ્રમેયની શરતોનું પાલન કરે અને ${f}'\,\left( {2\, + \,\frac{1}{{\sqrt 3 }}} \right)\, = \,0$ થાય, તો $a$ અને $b$ શોધો.
$1, -6$
$1, 1$
$0, 6$
$6,-6$
જો $a + b + c = 0 $ હોય, તો $(0, 1) $ અંતરાલમાં સમીકરણ $3ax^2 + 2bx + c = 0 $ કેટલા બીજ ધરાવે ?
જો $f(x) = \cos x,0 \le x \le {\pi \over 2}$, તો વાસ્તવિક સંખ્યા $‘c’$ મધ્યકમાન પ્રમેયનો ઉપયોગ કરી ને મેળવો.
ધારો કે $f:[2,4] \rightarrow R$ એ એવું વિકલનીય વિધેય છે કે જેથી
$\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1, x \in[2,4]$ જ્યાં $f(2)=\frac{1}{2}$ અને $f(4)=\frac{1}{4}$ છે.
નીચેના બે વિધાનો ધ્યાને લો.
$(A)$ : પ્રત્યેક $x \in[2,4]$ માટે. $f(x) \leq 1$
$(B)$ : પ્રત્યેક $x \in[2,4]$ માટ $f(x) \geq \frac{1}{8}$ તો,
વિધેય $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ કે જ્યાં $\mathrm{x} \in[0,1]$ માં મ્ધયકમાન પ્રમેય અનુસાર $c$ ની કિમંત મેળવો.
જો $c = \frac {1}{2}$ અને $f(x) = 2x -x^2$ એ અંતરાલ $x$ પર મધ્યકમાન પ્રમેય પાલન કરે છે તો $x$ મેળવો.