વિધેય $f(x) = {(x - 3)^2}$ એ અંતરાલ $[3, 4]$ માં મધ્યકમાન પ્રમેયનું પાલન કરે છે . જો વક્ર $y = {(x - 3)^2}$ પરનું બિંદુ મેળવો કે જેનો સ્પર્શકનો ઢાળએ બિંદુઑ $(3, 0)$ અને $(4, 1)$ ને જોડતી રેખાને સમાંતર છે .
$\left( {{7 \over 2},{1 \over 2}} \right)$
$\left( {{7 \over 2},{1 \over 4}} \right)$
$(1, 4)$
$(4, 1)$
$a = 1$ અને $b = 4$ લઈ વિધેય $f(x)=x^{2}-4 x-3$ માટે $[a, b]$ પર મધ્યકમાન પ્રમેય ચકાસો.
$a =-2$ અને $b = 2$ હોય, તો વિધેય $y=x^{2}+2$ માટે રોલનું પ્રમેય ચકાસો.
જો $f(x)$ એ $[0, 2]$ માં મધ્યક માન પ્રમેયનું પાલન કરે છે . જો $f (0) = 0$ અને દરેક $x$ કે જે $[0, 2]$ માટે $|f'(x)|\, \le {1 \over 2}$ તો . . . .
જો $2a + 3b + 6c = 0$, $a, b, c \in R$ હોય, તો સમીકરણ .......નું ઓછામાં ઓછું એક $0$ બીજ અને $1$ વચ્ચે છે.
જો વિધેય $f(x) = 2x^3 + ax^2 + bx$ એ અંતરાલ $[-1, 1 ]$ પર બિંદુ $c = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરતું હોય $2a + b$ ની કિમંત મેળવો.