$\int_{}^{} {\frac{{dx}}{{{{(2ax - {x^2})}^{1/2}}}} = {a^n}{{\sin }^{ - 1}}\left( {\frac{x}{a} - 1} \right)} $ in this formula $n =$ _____

  • A
    $1$
  • B
    $-1$
  • C
    $0$
  • D
    $\frac{1}{2}$

Similar Questions

Choose the correct match

List I 

List II

 $(i)$ Curie

 $(A)$ $ML{T^{ - 2}}$

 $(ii)$ Light year 

 $(B)$ $M$

 $(iii)$ Dielectric strength

 $(C)$ Dimensionless

 $(iv)$ Atomic weight

 $(D)$ $T$

 $(v)$ Decibel

 $(E)$ $M{L^2}{T^{ - 2}}$

 

 $(F)$ $M{T^{ - 3}}$

 

 $(G)$ ${T^{ - 1}}$

 

 $(H)$ $L$

 

 $(I)$ $ML{T^{ - 3}}{I^{ - 1}}$

 

 $(J)$ $L{T^{ - 1}}$

  • [IIT 1992]

If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where  $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by

  • [AIPMT 2015]

Force $F$ is given in terms of time $t$ and distance $x$ by $F = a\, sin\, ct + b\, cos\, dx$, then the dimension of $a/b$ is

Which of the following relation cannot be deduced using dimensional analysis? [the symbols have their usual meanings]

A system has basic dimensions as density $[D]$, velocity $[V]$ and area $[A]$. The dimensional representation of force in this system is