The speed of a wave produced in water is given by $v=\lambda^a g^b \rho^c$. Where $\lambda$, g and $\rho$ are wavelength of wave, acceleration due to gravity and density of water respectively. The values of $a , b$ and $c$ respectively, are

  • [JEE MAIN 2023]
  • A

    $\frac{1}{2}, \frac{1}{2}, 0$

  • B

    $1,1,0$

  • C

    $1,-1,0$

  • D

    $\frac{1}{2}, 0, \frac{1}{2}$

Similar Questions

A book with many printing errors contains four different formulas for the displacement $y$ of a particle undergoing a certain periodic motion:

$(a)\;y=a \sin \left(\frac{2 \pi t}{T}\right)$

$(b)\;y=a \sin v t$

$(c)\;y=\left(\frac{a}{T}\right) \sin \frac{t}{a}$

$(d)\;y=(a \sqrt{2})\left(\sin \frac{2 \pi t}{T}+\cos \frac{2 \pi t}{T}\right)$

$(a=$ maximum displacement of the particle, $v=$ speed of the particle. $T=$ time-period of motion). Rule out the wrong formulas on dimensional grounds.

To find the distance $d$ over which a signal can be seen clearly in foggy conditions, a railways engineer uses dimensional analysis and assumes that the distance depends on the mass density $\rho$ of the fog, intensity (power/area) $S$ of the light from the signal and its frequency $f$. The engineer find that $d$ is proportional to $S ^{1 / n}$. The value of $n$ is:

  • [IIT 2014]

$\int_{}^{} {\frac{{dx}}{{{{(2ax - {x^2})}^{1/2}}}} = {a^n}{{\sin }^{ - 1}}\left( {\frac{x}{a} - 1} \right)} $ in this formula $n =$ _____

Velocity $(v)$ and acceleration $(a)$ in two systems of units $1$ and $2$ are related as $v _{2}=\frac{ n }{ m ^{2}} v _{1}$ and $a_{2}=\frac{a_{1}}{m n}$ respectively. Here $m$ and $n$ are constants. The relations for distance and time in two systems respectively are

  • [JEE MAIN 2022]

The entropy of any system is given by

${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$

Where $\alpha$ and $\beta$ are the constants. $\mu, J, K$ and $R$ are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant repectively. [Take ${S}=\frac{{dQ}}{{T}}$ ]

Choose the incorrect option from the following:

  • [JEE MAIN 2021]