$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} = $
$3$
$1$
$2$
$0$
If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to
If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is
If ${a^x} = b,{b^y} = c,{c^z} = a,$ then value of $xyz$ is
$\log ab - \log |b| = $
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$