Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is
$[ - 1,\,1 - \sqrt 3 ]$
$[1 + \sqrt 3 ,3]$
$[ - 1,\,1 - \sqrt 3 ) \cup (1 + \sqrt 3 \,,\,3]$
None of these
$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then
The value of ${81^{(1/{{\log }_5}3)}} + {27^{{{\log }_{_9}}36}} + {3^{4/{{\log }_{_7}}9}}$ is equal to
If $a, b, c$ are distinct positive numbers, each different from $1$, such that $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$ $ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ then $abc =$
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$