व्यंजक $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ बराबर है
$\cos 2x$
$2\cos x$
${\cos ^2}x$
$1 + \cos x$
यदि $0 < x < \frac{\pi }{4}$, तब $\sec 2x - \tan 2x$ का मान होगा
यदि $\tan \theta = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }},$ तो $\sin \alpha + \cos \alpha $ व $\sin \alpha - \cos \alpha $ बराबर होंगे
माना $\alpha ,\beta $ इस प्रकार है कि $\pi < (\alpha - \beta ) < 3\pi $. यदि $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ तथा $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ तो $\cos \frac{{\alpha - \beta }}{2}$ का मान है
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ बराबर है
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $