माना $A = \{1, 2, 3\}, $ तब $A$ पर परिभाषित कुल संबंधों की संख्या क्या होगी
${2^9}$
$6$
$8$
इनमें से कोई नहीं
सिद्ध किजिए कि समुच्चय $A =\{x \in Z : 0 \leq x \leq 12\},$ में दिए गए निम्नलिखित संबंधों $R$ में से प्रत्येक एक तुल्यता संबंध है:
$R =\{(a, b): \mid a-b \mid, 4$ का एक गुणज है $\}$
मान लीजिए कि $L$ किसी समतल में स्थित समस्त रेखाओं का एक समुच्चय है तथा $R =\left\{\left( L _{1}, L _{2}\right): L _{1}, L _{2}\right.$ पर लंब है $\}$ समुच्चय $L$ में परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ सममित है किंतु यह न तो स्वतुल्य है और न संक्रामक है।
संबंध $R $ समुच्चय $\{2, 3, 4, 5\}$ से $ \{3, 6, 7, 10\}$ में; $xRy$ द्वारा परिभाषित है $ \Leftrightarrow x$ सापेक्षिक अभाज्य है, $y $ के, तब $R$ का प्रान्त $(Domain)$ है
वास्तविक संख्याओं $x $ तथा $ y $ के लिए $ x Ry$ $\Leftrightarrow $ $x - y + \sqrt 2 $ एक अपरिमेय संख्या है, तब $R $ है
माना $ A = \{p, q, r\},$ निम्न में कौन $A $ पर तुल्यता संबंध नहीं है