माना $\mathbb{N} \times \mathbb{N}$ पर एक संबंध $\mathrm{R},(\mathrm{a}, \mathrm{b}), \mathrm{R}(\mathrm{c}, \mathrm{d})$ यदि और केवल यदि $a d(b-c)=b c(a-d)$ है, द्वारा परिभाषित है। तो $R$
सममित है परन्तु न तो स्वतुल्य है न ही संक्रामक है
संक्रामक है परन्तु न तो स्वतुल्य है न ही सममित है
स्वतुल्य तथा सममित है परन्तु संक्रामक नहीं है
सममित तथा संक्रामक है परन्तु स्वतुल्य नहीं है
माना $X = \{ 1,\,2,\,3,\,4,\,5\} $ तथा $Y = \{ 1,\,3,\,5,\,7,\,9\} $, निम्न में से कौनसा $X$ और $Y$ में संबंध है।
ऐसे संबंध का उदाहरण दीजिए, जो संक्रामक हो परंतु न तो स्वतुल्य हो और न सममित हो।
एक अरिक्त समुच्चय $X$ दिया हुआ है। $P ( X )$ जो कि $X$ के समस्त उपसमुच्चयों का समुच्चय है, पर विचार कीजिए। निम्नलिखित तरह से $P ( X )$ में एक संबंध $R$ परिभाषित कीजिए :
$P ( X )$ में उपसमुच्चयों $A , B$ के लिए, $ARB$, यदि और केवल यदि $A \subset B$ है। क्या $R , P ( X )$ में एक तुल्यता संबंध है? अपने उत्तर का औचित्य भी लिखिए।
$n \times n$ के वास्तविक आव्यूहों $A$ तथा $B$ के एक समूह पर एक संबंध $R$ निम्न प्रकार से परिभाषित है :
"$ARB$ यदि और केवल यदि एक व्युत्क्रमणीय आव्यूह $P$ का अस्तित्व है। जिसके लिए $PAP -1= B$ है'। तो निम्न में से कौन-सा सत्य है ?
यदि $ R$ समुच्चय $A$ से $ B $ में संबंध है तथा $S$ समुच्च्य $B$ से $C $ में संबंध है, तब संबंध $ SoR $ है