माना $N$ प्राकतिक संख्याओं का समुच्चय है और $N$ पर एक संबंध $R$ निम्न द्वारा परिभाषित है : $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} \mid$ तो संबंध $R$
सममित है, परन्तु न तो स्वतुल्य है और न ही संक्रामक है
स्वतुल्य है, परन्तु न तो सममित है और न ही संक्रामक है
स्वतुल्य और सममित है, परन्तु संक्रामक नहीं है
एक तुल्यता संबंध है
यदि $A =\{1,2,3\}$ हो तो अवयव $(1,2)$ वाले तुल्यता संबंधों की संख्या है।
माना $X = \{ 1,\,2,\,3,\,4,\,5\} $ तथा $Y = \{ 1,\,3,\,5,\,7,\,9\} $, निम्न में से कौनसा $X$ और $Y$ में संबंध है।
मान $P$ सभी वास्तविक संख्याओं पर परिभाषित एक ऐसा संबंध है कि $P =\left\{( a , b ): \sec ^{2} a -\tan ^{2} b =1\right\}$ है, तो $P$
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x, y$ से ठीक-ठीक $7$ सेमी लंबा है $\}$
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
प्राकृत संख्याओं के समुच्चय $N$ में $R =\{(x, y): y=x+5$ तथा $x<4\}$ द्वारा परिभाषित संबंध $R$