माना $L$ यूक्लीडियन तल में सभी सरल रेखाओं का समुच्चय है, दो रेखायें ${l_1}$ तथा ${l_2}$ संबंध $R$ से संबंधित यदि और केवल यदि ${l_1}$, ${l_2}$ के समांतर है, तब संबंध $R$ है
स्वतुल्य
सममित
संक्रमक
तीनों $(a) , (b) $ व $ (c)$
माना $\mathbb{R}$ में एक सम्बन्ध $R$ है जो निम्न प्रकार दिया गया है $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): 3 \mathrm{a}-3 \mathrm{~b}+\sqrt{7}$ अपरिमेय संख्या है \} | तब $\mathrm{R}$
मान लीजिए कि समुच्चय $N$ में, $R =\{(a, b): a=b-2, b>6\}$ द्वारा प्रदत्त संबंध $R$ है निम्नलिखित में से सही उत्तर चुनिए:
मान लीजिए कि $A =\{1,2,3\}$ है। तब सिद्ध कीजिए कि ऐसे संबंधों की संख्या चार है, जिनमें $( 1,2)$ तथा $(2,3)$ हैं और जो स्वतुल्य तथा संक्रामक तो हैं किंतु सममित नहीं हैं।
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x$ तथा $y$ एक ही स्थान पर कार्य करते हैं$\}$
यदि $A =\{1,2,3\}$ हो तो अवयव $(1,2)$ वाले तुल्यता संबंधों की संख्या है।