माना $\mathbb{N}$ पर एक संबंध $\mathrm{R}, \mathrm{a} \mathrm{k}$ यदि $2 \mathrm{a}+3 \mathrm{~b}$, $\mathrm{a}, \mathrm{b} \in \mathbb{N}, 5$ का एक गुणज है द्वारा परिभाषित है, तो $\mathrm{R}$

  • [JEE MAIN 2023]
  • A

    स्वतुल्य नहीं है

  • B

    संक्रामक है परन्तु सममित नही है

  • C

    सममित है परन्तु संक्रांमक नहीं है

  • D

    एक तुल्यता संबंध है

Similar Questions

माना $n $ एक निश्चित धनात्मक पूर्णांक है, संबंध $R$  पूर्णाकों के समुच्चय $Z$ पर $aRb \Leftrightarrow n|a - b$$| $ से परिभाषित है, तब $R $ है

यदि $A =\{1,2,3\}$ हो तो अवयव $(1,2)$ वाले तुल्यता संबंधों की संख्या है।

माना $ R$  समुच्चय $A$ पर संबंध इस प्रकार है कि $R = {R^{ - 1}}$ तब $R $ है

माना $\mathrm{S}=\{1,2,3, \ldots, 10\}$ है। माना $\mathrm{S}$ के सभी उपसमुच्चयों का समुच्चय $M$ है, तो संबंध $\mathrm{R}=\{(\mathrm{A}, \mathrm{B}): \mathrm{A} \cap \mathrm{B} \neq \phi ; \mathrm{A}, \mathrm{B} \in \mathrm{M}\}$ है : 

  • [JEE MAIN 2024]

माना $\mathbb{R}$ में एक सम्बन्ध $R$ है जो निम्न प्रकार दिया गया है $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): 3 \mathrm{a}-3 \mathrm{~b}+\sqrt{7}$ अपरिमेय संख्या है \} | तब $\mathrm{R}$

  • [JEE MAIN 2023]