यदि ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ हो, तब $x$ का मान होगा
$k$
$\frac{1}{5}$
$5$
इनमें से कोई नहीं
मान लें कि $x, y$ वास्तविक संख्याएँ इस प्रकार है कि $x > 2 y > 0$ एवं $2 \log (x-2 y)=\log x+\log y$.तब $\frac{x}{y}$ के संभावित मान है:
${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}$ का मान है
मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?
यदि $1$ से भिन्न तीन विभिन्न धनात्मक संख्यायें $a, b, c $ इस प्रकार हो कि $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$$ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ तब $abc =$
$(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \text { to } \infty\right)}$ का मान ............. है ।