समीकरण $x ^{\left(16\left(\log _5 x \right)^3-68 \log _5 x \right)}=5^{-16}$
को संतुष्ट करने वाले $x$ के सभी धनात्मक वास्तविक मानों (positive real values) का गुणनफल (product)
. . . . . है।
$0$
$1$
$4$
$5$
मान लें कि $n$ सबसे छोटा धन पूर्णांक इस प्रकार है कि $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \geq 4$ निम्नांकित में कौन सा कथन सही है ?
यदि ${\log _{10}}x = y$हो, तब ${\log _{1000}}{x^2}$ का मान होगा
यदि ${\log _{10}}2 = 0.30103,{\log _{10}}3 = 0.47712,$ तो ${3^{12}} \times {2^8}$ में अंको की संख्या है
माना $\sum_{n=0}^{\infty} \frac{n^3((2 n) !)+(2 n-1)(n !)}{(n !)((2 n) !)}=a e+\frac{b}{e}+c\ $है, जहाँ $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$ तथा $\mathrm{e}=\sum_{\mathrm{n}=0}^{\infty} \frac{1}{\mathrm{n} !}$ है तो $\mathrm{a}^2-\mathrm{b}+\mathrm{c}$ बराबर है
यदि ${\log _7}2 = m,$ हो, तब ${\log _{49}}28$ बराबर होगा