यदि $\frac{1}{2} \le {\log _{0.1}}x \le 2$हो तब .......
$x $ का महत्तम मान $\frac{1}{{\sqrt {10} }}$होगा
$x$का मान $\frac{1}{{100}}$और $\frac{1}{{\sqrt {10} }}$के बीच स्थित है
$x$ का मान $\frac{1}{{100}}$और $\frac{1}{{\sqrt {10} }}$के बीच स्थित नहीं है
$x $ का न्यूनतम मान $\frac{1}{{100}}$ है
यदि ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ हो, तो $ x$ किस अन्तराल में है
मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?
$x $ के वास्तविक मानों का समुच्चय, जो कि असमिका ${\log _{1/2}}({x^2} - 6x + 12) \ge - 2x$ को संतुष्ट करता है, होगा
संख्या $15^2 \times 5^{18}$ को यदि आधार $(base)$ $10$ में लिखा जाए, तब इसके अंकों का योग $S$ है। तब
यदि $x = {\log _3}5,\,\,\,y = {\log _{17}}25$ हो, तो निम्न में से कौन सा सही है