$\sqrt {(\log _{0.5}^24)} $का मान है
$-2$
$\sqrt {( - 4)} $
$2$
इनमें से कोई नहीं
यदि ${x_n} > {x_{n - 1}} > ... > {x_2} > {x_1} > 1$हो तब ${\log _{{x_1}}}{\log _{{x_2}}}{\log _{{x_3}}}.....{\log _{{x_n}}}{x_n}^{x_{n - 1}^{{ {\mathinner{\mkern2mu\raise1pt\hbox{.}\mkern2mu \raise4pt\hbox{.}\mkern2mu\raise7pt\hbox{.}\mkern1mu}} ^{{x_1}}}}}$का मान है
$7\log \left( {\frac{{16}}{{15}}} \right) + 5\log \left( {\frac{{25}}{{24}}} \right) + 3\log \left( {\frac{{81}}{{80}}} \right)$ =
यदि $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ हो, तब
$\sum\limits_{r = 1}^{89} {{{\log }_3}(\tan \,\,{r^o})} $ =
मान लीजिए कि $a, b, x$ धनात्मक वास्तविक संख्याएँ हैं और $a \neq 1, x \neq 1$ एवं $a b \neq 1$ यदि $\log _a b=10$ तथा $\frac{\log _a x \log _x\left(\frac{b}{a}\right)}{\log _x b \log _{a b} x}=\frac{p}{q},$ यहाँ $p$ और $q$ धनात्मक पूर्णांक हैं एवं असहभाज्य (co-prime) हैं, तब $p+q$ का क्या मान होगा ?