$P$ એ એક બિંદુ $(a, b)$ કે જે પ્રથમ ચરણમાં આવેલ છે જો બે વર્તુળો બિંદુ $P$ માંથી પસાર થાય અને બંને અક્ષોને કાટકોણ ખૂણે સ્પર્શે તો
$a^2 - 6ab + b^2 = 0$
$a^2 + 2ab - b^2 = 0$
$a^2 - 4ab + b^2 = 0$
$a^2 - 8ab + b^2 = 0$
જો પરવલય $y ^{2}=4 x$ નો નાભિલંબ એ જેની ત્રિજ્યા $2 \sqrt{5}$ હોય તેવા વર્તુળો $C _{1}$ અને $C _{2}$ બંનેના સામાન્ય ચાપ હોય તો બંને વર્તુળો $C _{1}$ અને $C _{2}$ ના કેન્દ્રો વચ્ચેનું અંતર મેળવો
$r$ ત્રિજ્યાવાળા ત્રણ વર્તૂળો એકબીજાને સ્પર્શેં છે. આપેલ ત્રણેય વર્તૂળોને અંદરતી સ્પર્શતા વર્તૂળની ત્રિજ્યા :
અહી $Z$ એ બધાજ પૃણાંક નો ગણ છે .
$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+\mathrm{y}^{2} \leq 4\right\}$
$\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}: \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4\right\} $ અને
$\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2} \leq 4\right\}$
જો $\mathrm{A} \cap \mathrm{B}$ થી $\mathrm{A} \cap \mathrm{C}$ કુલ સંબંધની સંખ્યા $2^{\mathrm{p}}$ હોય તો $\mathrm{p}$ ની કિમંત મેળવો.
જો સમાન $'a'$ ત્રિજ્યા વાળા અને $(2, 3)$ અને $(5, 6)$ આગળ કેન્દ્ર વાળા વર્તૂળો લંબછેદી હોય તો $a$ મેળવો.
$x^{2}+ y^{2}+ c^{2} =2ax$ અને $x^{2} + y^{2} + c^{2} - 2by = 0$ સમીકરણવાળા વર્તૂળો એકબીજાને બહારથી ક્યારે સ્પર્શેં ?