વર્તૂળો ${x^2} + {y^2} + 2ax + cy + a = 0$ અને ${x^2} + {y^2} - 3ax + dy - 1 = 0$ બે ભિન્ન બિંદુઓ $P$ અને $Q$ માં છેદે છે. $a$ ની કેટલી કિંમતો માટે રેખા $5x + by - a = 0$ બિંદુ $P$ અને $Q$ માંથી પસાર થાય..
માત્ર એક
માત્ર બેજ
અનંત
કોઇપણ કિંમત માટે શક્ય નથી
જો વર્તુળ $x^{2}+y^{2}-2 x-6 y+6=0$ નો કોઈ એક વ્યાસ એ કેન્દ્ર $(2, 1)$ વાળા બીજા એક વર્તુળ $'C'$ ની જીવા હોય, તો તે વર્તુળની ત્રિજ્યા .......... થાય.
જો વર્તૂળો ${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$ અને ${x^2} + {y^2} + 2x + 2y - {p^2} = 0$ નાં છેદબિંદુઓ $P$ અને $Q$ હોય,તો $P,Q$ અને $ (1,1)$ માંથી પસાર થતા વર્તૂળ માટે:
વર્તૂળ $x^{2} + y^{2} + (2p + 3)x + (3 - 2py) y + p - 3 = 0$ ની ત્રિજ્યા કરતાં બમણી ત્રિજ્યા ધરાવતાં અને ઉગમબિંદુ માંથી વર્તૂળ પસાર થાય છે તો વર્તુળનું સમીકરણ મેળવો.
વર્તૂળો ${x^2} + {y^2} + 13x - 3y = 0$ અને $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ ના છેદબિંદુ અને બિંદુ $(1, 1)$ માંથી પસાર થતા વર્તૂળનું સમીકરણ મેળવો
$r$ ત્રિજ્યાવાળા ત્રણ વર્તૂળો એકબીજાને સ્પર્શેં છે. આપેલ ત્રણેય વર્તૂળોને અંદરતી સ્પર્શતા વર્તૂળની ત્રિજ્યા :