Trigonometrical Equations
normal

The real roots of the equation $cos^7x\,  +\,  sin^4x\,  =\,  1$  in the interval $(-\pi, \pi)$ are

A

$ \{- \frac{\pi }{2}\,,\,0 \}$

B

$\{ - \frac{\pi }{2}\,,\,0\,,\,\frac{\pi }{2} \}$

C

$\{ \frac{\pi }{2}\,,\,0 \}$

D

$\{ 0\,\,,\,\,\frac{\pi }{4}\,\,,\,\frac{\pi }{2} \}$

Solution

$\cos ^{7} x+\sin ^{4} x=1$

$\cos ^{7} x=1-\sin ^{4} x=\left(1-\sin ^{2} x\right)\left(1+\sin ^{2} x\right)$

$\cos ^{7} x=\cos ^{2} x\left(1+\sin ^{2} x\right)$

$\cos ^{7}(x)-\cos ^{2} x\left(2-\cos ^{2} x\right)=0$

$\cos ^{2} x\left(\cos ^{5} x+\cos ^{2}(x)-2\right)=0$

$\cos ^{2}(x)=0$ implies

$x=\frac{\pm \pi}{2}$

And

$\cos ^{5} x+\cos ^{2} x-2=0$ implies

$\cos (x)=1$

$x=0$

Hence

$x \in\left\{\frac{-\pi}{2}, 0, \frac{\pi}{2}\right\}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.