The real roots of the equation $cos^7x\, +\, sin^4x\, =\, 1$ in the interval $(-\pi, \pi)$ are
$ \{- \frac{\pi }{2}\,,\,0 \}$
$\{ - \frac{\pi }{2}\,,\,0\,,\,\frac{\pi }{2} \}$
$\{ \frac{\pi }{2}\,,\,0 \}$
$\{ 0\,\,,\,\,\frac{\pi }{4}\,\,,\,\frac{\pi }{2} \}$
Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-
If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be
If$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, where $0 < \theta < {180^o}$, then $\theta =$
If $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ where $x$ and $y$ both lie in second quadrant, find the value of $\sin (x+y)$.
The set of angles btween $0$ & $2\pi $ satisfying the equation $4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ is