If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is
$n\pi + \frac{{3\pi }}{4}$
$2n\pi + \frac{\pi }{4}$
$2n\pi - \frac{\pi }{4}$
$2n\pi \pm \frac{\pi }{4}$
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$
All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
The number of solutions of the equation $\sin x=$ $\cos ^{2} x$ in the interval $(0,10)$ is
Find the principal solutions of the equation $\sin x=\frac{\sqrt{3}}{2}$
Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}.$