$(p\rightarrow q) \leftrightarrow (q \vee ~ p)$ એ
$p \wedge q$ ને સમાન છે
હમેશા સત્ય વિધાન છે
હમેશા અસત્ય વિધાન છે
એક પણ નહીં
$p\Rightarrow q$ ના સમાનાર્થીંનું પ્રતિપ......છે.
$((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ નિત્યસત્ય થાય તેવા $r \in\{p, q, \sim p , \sim q \}$ ના મુલ્યોની સંખ્યા $..............$ છે.
વિધાન; $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ એ . . . .
વિધાન $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ ને સમતુલ્ય વિધાન મેળવો.
ધારો કે $p, q, r$ એ ત્રણ તાર્કિક વિધાનો છે. સંયોજીત વિધાનો $S _{1}:((\sim p ) \vee q ) \vee((\sim p ) \vee r ) \text { } $ અને $S _{2}: p \rightarrow( q \vee r )$ ધ્યાને લો તો, નીચેનાં પૈકી કયું સાચું નથી $?$