Gujarati
Hindi
10-1.Circle and System of Circles
normal

$S_1$ and $S_2$ are two concentric circles of radii $1$ and $2$ respectively. Two parallel tangents to $S_1$ cut off an arc from $S_2$. The length of the arc is

A

$\frac{\pi }{2}$

B

$\frac{2\pi }{3}$

C

$\frac{3\pi }{4}$

D

$\frac{\pi }{4}$

Solution

$\cos \theta=\frac{\mathrm{OM}}{\mathrm{OA}}=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}$

$\cos \alpha=\frac{1}{2} \Rightarrow \alpha=\frac{\pi}{3}$

$\operatorname{arc}(\mathrm{AB})=\frac{\pi}{3} \cdot 2 \mathrm{r}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.