A ball is projected with kinetic energy $E$, at an angle of $60^{\circ}$ to the horizontal. The kinetic energy of this ball at the highest point of its flight will become.
$Zero$
$\frac{E}{2}$
$\frac{E}{4}$
$E$
Given below are two statements. One is labelled as Assertion $A$ and the other is labelled as Reason $R$.
Assertion A :Two identical balls $A$ and $B$ thrown with same velocity '$u$ ' at two different angles with horizontal attained the same range $R$. If $A$ and $B$ reached the maximum height $h_{1}$ and $h_{2}$ respectively, then $R =4 \sqrt{ h _{1} h _{2}}$
Reason R: Product of said heights.
$h _{1} h _{2}=\left(\frac{u^{2} \sin ^{2} \theta}{2 g }\right) \cdot\left(\frac{u^{2} \cos ^{2} \theta}{2 g }\right)$
Choose the $CORRECT$ answer
Four bodies $P, Q, R$ and $S$ are projected with equal velocities having angles of projection $15^o , 30^o , 45^o $ and $60^o $ with the horizontal respectively. The body having shortest range is
The velocity of projectile at the intial point $A$ is $\left( {2\hat i + 3\hat j} \right)$ $m/s $ . It's velocity (in $m/s$) at point $B$ is
A bullet is fired from a gun at the speed of $280\,ms ^{-1}$ in the direction $30^{\circ}$ above the horizontal. The maximum height attained by the bullet is $........\,m$ $\left(g=9.8\,ms ^{-2}, \sin 30^{\circ}=0.5\right):-$
A particle of mass $100\,g$ is projected at time $t =0$ with a speed $20\,ms ^{-1}$ at an angle $45^{\circ}$ to the horizontal as given in the figure. The magnitude of the angular momentum of the particle about the starting point at time $t=2\,s$ is found to be $\sqrt{ K }\,kg\,m ^2 / s$. The value of $K$ is $............$ $\left(\right.$ Take $\left.g =10\,ms ^{-2}\right)$