किसी बिन्दु से एक गेंद प्रक्षेपण कोण $\theta $ तथा चाल ${v_o}$ से फेंकी जाती है। उसी बिन्दु से तथा ठीक उसी क्षण एक व्यक्ति गेंद को पकड़ने के लिये ${v_o}/2$ के नियत वेग से दौड़ना शुरु करता है। क्या व्यक्ति गेंद को पकड़ सकेगा ? यदि हाँ, तो प्रक्षेपण कोण का मान क्या होगा
हाँ, ${60^o}$
हाँ, ${30^o}$
नहीं
हाँ, ${45^o}$
किसी बन्दूक से एक गोली क्षैतिज से $30^{\circ}$ की दिशा में ऊपर की ओर $280\,m s ^{-1}$ की चाल से दागी जाती है। गोली द्वारा तय की गई अधिकतम ऊँचाई $.....\,m$ है:$\left( g =9.8\,m s ^{-2}, \sin 30^{\circ}=0.5\right):$
यदि एक प्रक्षेप्य का प्रारम्भिक वेग दोगुना कर दिया जावे तथा प्रक्षेपण कोण वही रहे, तो उसकी महत्तम ऊँचाई
पानी का एक फव्वारा धरती पर चारों तरफ पानी छिड़कता है। यदि फव्वारे से निकल रहे पानी की चाल $v$ है, तब फब्वारें के चारों तरफ गीला होने वाला अधिकतम कुल क्षैत्रफल हैं:
एक गेंद क्षैतिज तल से $\theta$ कोण पर $15\,ms ^{-1}$ की चाल से इस प्रकार प्रक्षेपित की जाती है कि इसके द्वारा तय की गई दूरी एवं अधिकतम ऊँचाई का मान समान है, तो ' $\tan\, \theta$ ' का मान होगा:
जमीन से एक पत्थर को $25$ मी/सै के वेग से प्रक्षेपित किया जाता है। दो सैकण्ड पश्चात् यह पत्थर $5$ मीटर ऊँची दीवार को ठीक पार कर जाता है। पत्थर का प्रक्षेपण कोण ...... $^o$ होगा $(g = 10$ मी/सै$^2)$