A ball moving with velocity $2\, m/s$ collides head on with another stationary ball of double the mass. If the coefficient of restitution is $0.5$, then their velocities (in $m/s$) after collision will be
$0, 1 $
$1, 1 $
$1, 0.5 $
$0,2$
When a ball is freely fallen from a given height it bounces to $80\%$ of its original height. What fraction of its mechanical energy is lost in each bounce ?
The work done by a force $\vec F = (-6x^3\hat i)\, N$, in displacing a particle from $x = 4\, m$ to $x = -2\, m$ is .............. $\mathrm{J}$
Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2\, s$ will be ............ $\mathrm{m}/ \mathrm{s}$
A particle of mass $m$ is moving in a circular path of constant radius $r$ such that its centripetal acceleration $ac$ is varying with time t as $a_c = k^2rt^2$ where $k$ is a constant. The power delivered to the particle by the force acting on it
A curved surface is shown in figure. The portion $BCD$ is free of friction. There are three spherical balls of identical radii and masses. Balls are released from rest one by one from $A$ which is at a slightly greater height than $C$.
With the surface $AB$, ball $1$ has large enough friction to cause rolling down without slipping; ball $2$ has a small friction and ball $3$ has a negligible friction.
$(a)$ For which balls is total mechanical energy conserved ?
$(b)$ Which ball $(s)$ can reach $D$ ?
$(c)$ For ball which do not reach $D$, which of the balls can reach back $A$ ?