- Home
- Standard 11
- Physics
A ball moving with velocity $2\, m/s$ collides head on with another stationary ball of double the mass. If the coefficient of restitution is $0.5$, then their velocities (in $m/s$) after collision will be
$0, 1 $
$1, 1 $
$1, 0.5 $
$0,2$
Solution
Here, $\mathrm{m}_{1}=\mathrm{m}, \mathrm{m}_{2}=2 \mathrm{m}$
$\mathrm{u}_{1}=2 \mathrm{m} / \mathrm{s}, \mathrm{u}_{2}=0$
coefficient of restitution, $\mathrm{e}=0.5$
$ Let $$v_{1}$ and $v_{2}$ be their respective velocities after collision,
Applying the law of conservation of linear momentum, we get
${\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}}$
${\mathrm{m} \times 2+2 \mathrm{m} \times 0=\mathrm{m} \times \mathrm{v}_{1}+2 \mathrm{m} \times \mathrm{v}_{2}}$
or $2 \mathrm{m}=\mathrm{mv}_{1}+2 \mathrm{mv}_{2}$
or $2=\left(\mathrm{v}_{1}+2 \mathrm{v}_{2}\right)$ $…(i)$
By definition of coefficient of restitution,
$\mathrm{e}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{u}_{1}-\mathrm{u}_{2}}$
or $\mathrm{e}\left(\mathrm{u}_{1}-\mathrm{u}_{2}\right)=\mathrm{v}_{2}-\mathrm{v}_{1}$
$0.5(2-0) =v_{2}-v_{1}$ $…(ii)$
$1 =v_{2}-v_{1}$
Solving equations $(i)$ and $(ii),$ we get
$\mathrm{v}_{1}=0 \mathrm{m} / \mathrm{s}, \mathrm{v}_{2}=1 \mathrm{m} / \mathrm{s}$