A ball moving with velocity $2\, m/s$ collides head on with another stationary ball of double the mass. If the coefficient of restitution is $0.5$, then their velocities (in $m/s$) after collision will be
$0, 1 $
$1, 1 $
$1, 0.5 $
$0,2$
A mass $m$ moves with a velocity $v$ and collides inelastically with another identical mass initially at rest. After collision the first mass moves with velocity $\frac{v}{\sqrt 3}$ in a direction perpendicular to its initial direction of motion. The speed of second mass after collision is
A force of $\left( {2\widehat i + 3\widehat j + 4\widehat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\widehat i + 4\widehat j + 5\widehat k} \right)\,m$. The power used is :- ............... $\mathrm{W}$
A container of mass $m$ is pulled by a constant force in which a second block of same mass $m$ is placed connected to the wall by a mass-less spring of constant $k$ . Initially the spring is in its natural length. Velocity of the container at the instant when compression in spring is maximum for the first time
A stone tied to a string $L$ is whirled in a vertical circle, with the other end of the string at the centre. At a certain instant of time, the stone is as its lowest position and has a speed $u$. the magnitude of the change in its velocity as it reaches a position where the string is horizontal is
An object has momentum $p$ & kinetic energy $E$. If its momentum becomes $2\,p$ then its kinetic energy will be :-