A block of mass $M$ is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has force constant value $k.$ The mass is released from rest with the spring initially unstretched. The maximum extension produced in the length of the spring will be
$2 Mg/k$
$4 Mg/k$
$Mg/2k$
$Mg/k$
A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d.$ The net work done in the process is
A bullet of mass $m$ strikes a block of mass $M$ connected to a light spring of stiffness $k,$ with a speed $v_0.$ If the bullet gets embedded in the block then, the maximum compression in the spring is
Find the maximum tension in the spring if initially spring at its natural length when block is released from rest.
A block of mass $m$ starts at rest at height $h$ on a frictionless inclined plane. The block slides down the plane, travels across a rough horizontal surface with coefficient of kinetic friction $μ$ , and compresses a spring with force constant $k$ a distance $x$ before momentarily coming to rest. Then the spring extends and the block travels back across the rough surface, sliding up the plane. The block travels a total distance $d$ on rough horizontal surface. The correct expression for the maximum height $h’$ that the block reaches on its return is
Two springs have their force constant as $k_1$ and $k_2 (k_1 > k_2)$. when they are stretched by the same force